1) A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days.

About 235

- 2) A bacteria culture starts with 500 bacteria and grows at a rate proportional to its size. After 3 hours there are 8000 bacteria.
 - a) Find an expression for the number of bacteria after *t* hours.
 - b) Find the number of bacteria after 4 hours.
 - c) Find the rate of growth after 4 hours.
 - d) When will the population reach 30,000?

t hours.	$y(t) = 500(16)^{t/3}$
≈ 20,159	
≈18,631 c	ells/h
≈4.4 h	

3) The half-life of cesium-137 is 30 years. Suppose we have a 100-mg sample.

a)	Find the mass that remains after t years.	$y(t) = 100(2)^{-t/30}$
b)	How much of the sample remains after 100 years?	≈9.92 mg
c)	After how long will only 1 mg remain?	≈199.3 years

- 4) A roast turkey is taken from an oven when its temperature has reached 185°F and is placed on a table in a room where the temperature is 75°F.
 - a) If the temperature of the turkey is 150°F after half an hour, what is the temperature after 45 minutes?
 - b) When will the turkey have cooled to 100° F?

5) Consider a population P = P(t) with constant relative birth and death rates α and β , respectively, and a constant emigration rate *m*, where α , β , and *m* are positive constants. Assume that $\alpha > \beta$. Then the rate of change of the population at time *t* is modeled by the differential equation:

$$\frac{dP}{dt} = kP - m \qquad \text{where } k = \alpha - \beta$$

- a) Find the solution of this equation that satisfies the initial condition $P(0) = P_0$.
- b) What condition on m will lead to an exponential expansion of the population?
- c) What condition on m will result in a constant population? A population decline?
- d) In 1847, the population of Ireland was about 8 million and the difference between the relative birth and death rates was 1.6% of the population. Because of the potato famine in the 1840s and 1850s, about 210,000 inhabitants per year emigrated from Ireland. Was the population expanding or declining at that time?

a)
$$P(t) = \frac{m}{k} + \left(P_0 - \frac{m}{k}\right)e^{kt}$$

b) $m < kP_0$
c) Constant: $m = kP_0$, Decline: $m > kP_0$
d) Declining