1) A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days.

About 235

2) A bacteria culture starts with 500 bacteria and grows at a rate proportional to its size. After 3 hours there are 8000 bacteria.
a) Find an expression for the number of bacteria after t hours.

$$
y(t)=500(16)^{t / 3}
$$

b) Find the number of bacteria after 4 hours.
c) Find the rate of growth after 4 hours.
d) When will the population reach 30,000 ?
$\approx 20,159$
$\approx \approx 18,631 \mathrm{cells} / \mathrm{h}$
$\approx \approx 4.4 \mathrm{~h}$
3) The half-life of cesium-137 is 30 years. Suppose we have a $100-\mathrm{mg}$ sample.
a) Find the mass that remains after t years.
b) How much of the sample remains after 100 years?
c) After how long will only 1 mg remain?
$y(t)=100(2)^{-t / 30}$
$\approx \approx 9.92 \mathrm{mg}$
≈ 199.3 years
4) A roast turkey is taken from an oven when its temperature has reached $185^{\circ} \mathrm{F}$ and is placed on a table in a room where the temperature is $75^{\circ} \mathrm{F}$.
a) If the temperature of the turkey is $150^{\circ} \mathrm{F}$ after half an hour, what is the temperature after 45 minutes?
b) When will the turkey have cooled to $100^{\circ} \mathrm{F}$?

$$
\begin{aligned}
& a) \approx 137^{\circ} \mathrm{F} \\
& b) \approx 116 \mathrm{~min}
\end{aligned}
$$

5) Consider a population $P=P(t)$ with constant relative birth and death rates α and β, respectively, and a constant emigration rate m, where α, β, and m are positive constants. Assume that $\alpha>\beta$. Then the rate of change of the population at time t is modeled by the differential equation:

$$
\frac{d P}{d t}=k P-m \quad \text { where } k=\alpha-\beta
$$

a) Find the solution of this equation that satisfies the initial condition $P(0)=P_{0}$.
b) What condition on m will lead to an exponential expansion of the population?
c) What condition on m will result in a constant population? A population decline?
d) In 1847, the population of Ireland was about 8 million and the difference between the relative birth and death rates was 1.6% of the population. Because of the potato famine in the 1840 s and 1850 s , about 210,000 inhabitants per year emigrated from Ireland. Was the population expanding or declining at that time?

$$
\begin{aligned}
& \text { a) } P(t)=\frac{m}{k}+\left(P_{0}-\frac{m}{k}\right) e^{k t} \\
& \text { b) } m<k P_{0} \\
& \text { c) Constant: } m=k P_{0} \text {, Decline: } m>k P_{0} \\
& \text { d) Declining }
\end{aligned}
$$

